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Nonlinear instability of a contact line
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A thin liquid mass of fixed volume spreading under the action of gravity on an
inclined plane develops a fingering instability at the front. In this study we consider the
motion of a viscous sheet down a pre-wetted plane with a large inclination angle. We
demonstrate that the instability is a phase instability associated with the translational
invariance of the system in the direction of flow and we analyse the weakly nonlinear
regime of the instability by utilizing methods from dynamical systems theory. It is
shown that the evolution of the fingers is governed by a Kuramoto–Sivashinsky-type
partial differential equation with solution a saw-tooth pattern when the inclined plane
is pre-wetted with a thin film, while the presence of a thick film suppresses fingering.

1. Introduction
A key feature of numerous technological applications, in particular thin liquid film

coating, is dynamic wetting, that is the displacement of a gas by a liquid on a solid
surface. Central to any description of wetting is the dynamic contact line problem
which includes the stress singularity at the three-phase contact line and determination
of the dynamic contact angle. The works of Huh & Scriven (1971) and Dussan V.
& Davis (1974) highlight the fundamental difficulties associated with the dynamic
contact line problem formulated in the framework of conventional fluid mechanics.

Over the years several theories and models have been proposed to remove the
singularity and to provide a proper description of the fluid mechanics of moving
contact lines. One of the most popular approaches has been the replacement of the
no-slip boundary condition with a Navier slip model (see for example Dussan V.
1979; Hocking 1992; and Haley & Miksis 1991) while recently a theory which treats
dynamic wetting as a particular case of a more general physical phenomenon, namely
the process by which interfaces form or disappear within a flow, has been developed
by Shikhmurzaev (1997).

The associated problem of the stability of moving contact lines has similarly received
considerable attention over the years, a characteristic feature being that when the flow
becomes unstable it develops fingers at the leading edge of the spreading liquid. The
instability is observed under conditions of forced wetting when the contact line is
driven by gravity or other body forces.

The fingering instability of a thin viscous liquid sheet of fixed volume spreading
under the action of gravity on a dry inclined plane was first studied by Huppert
(1982). His pioneering study showed that the initially two-dimensional liquid mass
develops an instability in the transverse direction that eventually grows into well-
defined fingers. Huppert’s experiments as well as the more recent experiments by Silvi
& Dussan V. (1985) also revealed the existence of two patterns for the fingers that
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developed depending on the wettability characteristics of the solid–liquid pair. The
same type of instability has been observed (Melo, Joanny & Fauve 1989; Fraysse &
Homsy 1994) in the problem of a drop spinning on an horizontal substrate where
the bulk force density exhibits a linear dependence on the distance from the axis of
rotation – the gravitational force is now replaced with the centrifugal acceleration.

The base flow before the onset of the instability has been characterized by Troian et
al. (1989), Hocking (1990) and Moriarty, Schwartz & Tuck (1991). Their analyses show
that the front is a capillary ridge where all forces – surface tension, viscous and body
force – balance. Significant progress towards the understanding of the linear stage of
the instability was achieved with the works of Troian et al. (1989) and more recently
Spaid (1995), Spaid & Homsy (1996) and Bertozzi & Brenner (1997) who performed
a linear stability analysis of the capillary ridge in the transverse direction. All these
works have pointed out that fingering is closely connected with the capillary hump and
have revealed the existence of a preferred wavelength for the instability in the spanwise
direction. Qualitative agreement with the theoretical predictions for the instability
wavelength was demonstrated by Fraysse & Homsy (1994) and de Bruyn (1992).

The nonlinear stage of the fingering instability is considered in this study. The
presence of a constant-thickness precursor film is assumed at the front of the contact
line as has been done by Troian et al. (1989), Moriarty et al. (1991), Spaid & Homsy
(1996) and Bertozzi & Brenner (1997). The precursor film model conveniently re-
moves the stress singularity associated with the presence of a true contact line and the
classical no-slip boundary condition applies everywhere on the solid substrate. The
situation is then similar to that of a liquid mass flowing on a pre-wetted plane. Using
methods from dynamical systems, we develop a theory for the weakly nonlinear stage
of the instability. More specifically, the linearized operator of the nonlinear system
yields a spectrum with a zero eigenvalue well isolated from the higher-order nega-
tive eigenvalues. Such nonlinear systems exhibit unique nonlinear dynamics near the
equilibrium points: any sufficiently rich initial disturbance will excite all the modes
in the spectrum; however, for small- but finite-amplitude disturbances, the modes
associated with the negative eigenvalues will relax very rapidly and the system tra-
jectory will approach exponentially fast an invariant manifold of the same dimension
as the number of zero eigenvalues. Hence, instead of modelling the entire infinite-
dimensional nonlinear dynamics, one needs only to decipher the low-dimensional and
slow nonlinear dynamics on the invariant manifold. We shall also demonstrate that
the instability is a phase instability with growth due to the translational invariance
of the system in the streamwise direction. The nonlinear evolution is governed by
a Kuramoto–Sivashinsky-type partial differential equation whose solution is a saw-
tooth pattern for the fingers for small values of the precursor film thickness while the
presence of a thick precursor prevents the instability.

2. Formulation
A thin viscous current is flowing down an inclined plane under the action of gravity

(see figure 1). Assuming small slopes and creeping flow conditions, the standard
lubrication approximation is (Troian et al. 1989; Schwartz 1989; Goodwin & Homsy
1991)

∂h

∂t
+ ∇{h3

[
i + B−1∇ (hxx + hyy

)]}
= 0 (2.1)

where h is the dimensionless film thickness in the z-direction (h, x and y have been
non-dimensionalized with a characteristic lengthscale `c in the x-direction which
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Figure 1. Viscous current down a slope. The location of the apparent
contact line is given by −α(y, t).

can be defined as the length of the liquid mass in this direction at time 0), i is
the unit vector in the streamwise direction and B−1 is an inverse Bond number
defined B = `2

c%g sin β/σ with % and σ the density and surface tension of the liquid
respectively, g the gravitational acceleration and β the angle between the inclined
plane and the horizontal direction. Time in (2.1) has been non-dimensionalized with
the time scale associated with viscous gravitational drainage, 3µ/(%g sin β`c) where µ
is the viscosity of the liquid. Note that in (2.1) the hydrostatic head due to gravity
in the direction perpendicular to the solid boundary has been neglected. According
to Troian et al. (1989) this is indeed the case for Ca1/3 � tan β, i.e. for the large
inclination angles considered here (the capillary number is defined as Ca = µU/σ
with U a typical contact line speed (Troian et al. 1989; Hocking 1990)).

Following Troian et al. (1989) and Moriarty et al. (1991), the surface tension
forces are small compared to the viscous and gravitational forces, that is B � 1
(indeed this is the case in experiments (Huppert 1982; Melo et al. 1989; Fraysse &
Homsy 1994)), and the curvature terms in (2.1) can be neglected to leading order.
The resulting nonlinear hyperbolic partial differential equation for the region where
viscous and gravitational forces balance was solved by Huppert using the method of
characteristics to obtain the film height

h0(x, t) = 3−1/2x1/2t−1/2 (2.2)

where 0 6 x 6 Γ0 with x = Γ0 the location of the unperturbed contact line

Γ0(t) = (3/2)
2/3

31/3t1/3. (2.3)

The solution given by (2.2) is simply a shock that ends at x = Γ0 with height
H0 = 2−1/3t−1/3. We can now obtain an expression for the capillary number as a
function of the physical parameters in the problem: by definition Ca = µU/σ where
U = `c[(ρg sin β`c)/3µ] × (dΓ0/dt) such that Ca = (1/3)B(dΓ0/dt) and Ca � 1 for
t� B3/2 with dΓ0/dt = O(t−2/3) from (2.3).

In the region close to the contact line the surface tension terms are no longer
negligible. These nonlinear diffusion terms must be included in a thin boundary layer
in order to smooth out the discontinuity of the shock in (2.2). A number of authors
(Troian et al. 1989; Hocking 1990; Moriarty et al. 1991; Fraysse & Homsy 1994)
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recognized that the problem is a singular perturbation one with a small parameter
multiplying the higher-order derivatives in equation (2.1). Therefore, in the region
close to the contact line we introduce the inner coordinates

h = H0(t)Φ
∗(v), v = H0

−1/3B1/3(x− Γ0) (2.4)

where v is a coordinate moving with the speed of the unperturbed contact line, and
the one-dimensional version of (2.1) can be written as

B−1/3H
−8/3
0 Ḣ0Φ

∗ − 1
3
B−1/3Ḣ0H

−8/3
0 vΦ∗v −H−2

0 Γ̇0Φ
∗
v + (Φ∗3)v + (Φ∗3Φ∗vvv)v = 0,

where the dot denotes differentiation with respect to time. The first two terms in the
above equation are O(B−1/3t−4/9) and can be safely omitted compared with the other
terms:

−H−2
0 Γ̇0Φ

∗
v + (Φ∗3)v + (Φ∗3Φ∗vvv)v = 0. (2.5)

Hence, the time-derivative term in (2.1) only contributes through the dependence of
H−2

0 Γ̇0 on time and the inner region is quasi-steady to leading order (see for example
Hocking 1990 and Moriarty et al. 1991).

At the front of the contact line we assume the presence of a constant-thickness
precursor film as was first proposed by Troian et al. (1989), thus circumventing the dif-
ficulties associated with the presence of a true contact line (the contact line simply be-
comes an apparent one). The model is appropriate for wetting fluids only: we can argue
that partially wetting fluids cannot sustain flat thin films without rupture and subse-
quent de-wetting (Veretennikov, Indeikina & Chang 1998). The situation is then similar
to that of a thin liquid mass of a perfectly wetting fluid flowing on an inclined plane
pre-wetted with a thin flat film of the same fluid. We also assume that the precursor
film thickness is large enough so that long-range attractive intermolecular interactions
between the solid and gas molecules separated by the liquid phase are not significant.
These forces generate a disjoining pressure for thicknesses of the order of 1 to 100 nm
(Teletzke, Davis & Scriven 1987; Schwartz & Eley 1998) and they are responsible
for the formation of a front-running precursor film that exponentially decays to zero
ahead of the macroscopic front of completely wetting fluids spreading on dry surfaces
(de Gennes 1985; Kalliadasis & Chang 1994a; Kalliadasis & Chang 1996).

We can now integrate (2.5) once with respect to v and fix the integration constant
by demanding that h = H0 is a solution (this represents matching to the outer region
h0(x, t) as v → −∞). To match to a precursor film of thickness b at the front of
the contact line we note that Γ̇0(H0 − b) = H3

0 − b3 from conservation of mass
considerations and, with δ = b/H0, (2.5) becomes the equation for the capillary ridge
that smooths out Huppert’s outer solution:

Φ∗vvv = −δ + δ2

Φ∗3
+

1 + δ + δ2

Φ∗2
− 1. (2.6)

This was first derived by Troian et al. (1989). In a three-dimensional phase space the
inner region is a heteroclinic orbit that connects the two stable fixed points Φ∗ = 1
and Φ∗ = δ and has to be obtained numerically with the boundary conditions Φ∗ → 1
as v → −∞ and Φ∗ → δ as v → +∞. The numerical solution of (2.6) is discussed by
Tuck & Schwartz (1990). Finally, notice that time t in (2.6) plays a parametric role
through the dependence of H0 on t; however, although H0 decreases with time, it is
assumed to evolve on a slow time scale compared to the faster fingering time scale
and such that the front is quasi-steady.
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To analyse the nonlinear stage of the instability we note that for B � 1, the
capillary ridge, which is now two-dimensional, is restricted to a region close to the
contact line. This observation is consistent with the experimental data by Melo et al.
(1989) for the spin coating problem which clearly demonstrate that even when the
fingers are well developed – at least in the weakly nonlinear regime of the instability
– the ridge is restricted to an area close to the contact line. Simple stability arguments
presented by Hocking (1990), show that the outer region is linearly stable and the
instability is closely connected with the inner domain. We then introduce in (2.1) the
similarity transformation

h = H0(t)Φ(v, w, t), v = H
−1/3
0 B1/3(x− Γ0), w = H

−1/3
0 B1/3y

to obtain

Ḣ0B
−1/3H

−8/3
0 Φ− 1

3
Ḣ0B

−1/3H
−8/3
0 vΦv +H

−5/3
0 B−1/3Φt − Γ̇0H

−2
0 Φv + (Φ3)v

+
∂

∂v

[
Φ3 ∂

∂v
(Φvv + Φww)

]
+

∂

∂w

[
Φ3 ∂

∂w
(Φvv + Φww)

]
= 0.

As with the derivation of (2.5) the first two terms in the above equation are
O(B−1/3t−4/9) and can be safely neglected. The time-dependent coefficient of Φt can
be scaled away by introducing a modified time scale τ first proposed by Troian et al.

(1989) for the linear stability analysis of the capillary ridge: B−1/3H
−5/3
0 Φt = Φτ or

τ = (9/4)2−5/9B1/3t4/9 to leading order in δ, and with Γ̇0/H
2
0 = 1 + δ + δ2 we obtain

the basic equation for the analysis to follow:

Φτ − (1 + δ + δ2)Φv + (Φ3)v +
∂

∂v

[
Φ3 ∂

∂v
(Φvv + Φww)

]
+

∂

∂w

[
Φ3 ∂

∂w
(Φvv + Φww)

]
= 0.

(2.7)

We now introduce a long scale in the transverse direction r = εw with ε � 1. The
presence of this slow scale signifies the slow variation of Φ in the w-direction at
least in the weakly nonlinear stage of the instability. We also introduce a disturbance
v(v, r, τ) with Φ(v, r, τ) = Φ∗(v) + v(v, r, τ) which when substituted into (2.7) using (2.6)
yields the disturbance equation

vτ =Lv +

3∑
1

Ni(v) + ε2

7∑
4

Ni(v) + ε4

11∑
8

Ni(v) (2.8)

where the linear operator L is defined as

L = −2(1 + δ + δ2)
∂

∂v
+ 3(δ + δ2)

∂

∂v

[
(·)
Φ∗

]
− ∂

∂v

[
Φ∗3

∂3

∂v3
(·)
]

(2.9)

and the nonlinearities Ni are given by

N1(v) = − ∂

∂v

(
3Φ∗v2 + 3Φ∗2vvvvv + 3Φ∗Φ∗vvvv

2
)
,

N2(v) = − ∂

∂v

(
v3 + 3Φ∗v2vvvv + Φ∗vvvv

3
)
, N3(v) = − ∂

∂v

(
v3vvvv

)
,

N4(v) = − ∂

∂v

(
Φ∗3vrrv

)− ∂

∂r

(
Φ∗3vvvr

)
,
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N5(v) = − ∂

∂v

(
3Φ∗2vvrrv

)− ∂

∂r

(
3Φ∗2vvvvr

)
,

N6(v) = − ∂

∂v

(
3Φ∗v2vrrv

)− ∂

∂r

(
3Φ∗v2vvvr

)
, N7(v) = − ∂

∂v

(
v3vrrv

)− ∂

∂r

(
v3vvvr

)
,

N8(v) = − ∂

∂r

(
Φ∗3vrrr

)
, N9(v) = − ∂

∂r

(
3Φ∗2vvrrr

)
,

N10(v) = − ∂

∂r

(
3Φ∗v2vrrr

)
, N11(v) = − ∂

∂r

(
v3vrrr

)
.

The eigenfunctions Φk and eigenvalues λk of L are defined from the eigenvalue
problem

LΦk = λkΦk, Φk(v → ±∞) = 0, k = 0, 1, 2, . . . . (2.10)

The boundary conditions are decaying functions at infinity, thus restricting our
attention to localized disturbances associated with the discrete spectrum of L. The
continuous spectrum will consist of those eigenfunctions with bounded oscillatory
behaviour as v → ±∞, and while we expect at least part of this continuous spectrum
to be excited, since the flat films far from the capillary hump are unstable to periodic
disturbances of certain wavelength, we can assume that these modes are swept away
by the faster moving capillary hump and are hence unimportant to the dynamics
of the front (similar assumptions have been made in stability studies of solitary
waves on falling films (Chang, Demekhin & Kopelevich 1995, 1996)). Alternatively,
the disturbances should not alter the base flow far from the hump and Φ → 1 as
v → −∞, Φ→ δ as v → +∞.

The adjoint operator L∗ is defined with respect to the usual L2(−∞,+∞) inner
product 〈f, g〉 =

∫ +∞
−∞ fḡdv (the overbar designates complex conjugation) for any two

functions f and g with appropriate boundary conditions at infinity and such that
〈Lf, g〉 = 〈f,L∗g〉 (we note that L is not self-adjoint and the discrete eigenvalues
and eigenfunctions can be complex). A simple integration by parts yields

L∗ = −(1 + δ + δ2)
∂

∂v
+ 3Φ∗2

∂

∂v
+ 3Φ∗2Φ∗vvv

∂

∂v
− ∂3

∂v3

[
Φ∗3

∂

∂v
(·)
]

(2.11)

and the adjoint eigenvalue problem is defined from

L∗Φ̂k = λkΦ̂k,
∂Φ̂k

∂v
(v → ±∞) = 0, k = 0, 1, 2, . . . . (2.12)

By differentiating now the defining equation (2.6) for the capillary ridge twice with
respect to v one obtains

LΦ∗v = 0, (2.13a)

and

Φ0 = Φ∗v (2.13b)

is a null eigenfunction corresponding to the eigenvalue λ0 = 0. This eigenfunction
is a key component in the present theory and it is associated with the translational
invariance of the system in the v-direction: since equation (2.6) for the capillary ridge
is invariant to a shift in v, if Φ∗ is a solution, so must be its translate Φ∗(v − v0(t))
and hence there is a family of possible solutions generated by the translation. If one
perturbs the capillary hump by translating it slightly, that is v0(t)� 1, then

Φ∗(v − v0(t)) ∼ Φ∗(v)− v0(t)Φ
∗
v (v) (2.14)
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where v0(t)Φ
∗
v(v) is the perturbation due to translation. Equation (2.14) can now be

substituted into (2.6) and after linearizing for v0 � 1 and differentiating the resulting
equation once with respect to v one obtains (2.13a): the translational symmetry
manifests itself as a null eigenfunction.

The ultimate goal of our study is the derivation of an evolution equation for
the location of the fingers in the weakly nonlinear regime of the instability. We
shall now derive the functional form of this equation using qualitative arguments
based on simple symmetry and global constraint considerations prior to the formal
derivation in the next section. For this purpose we decompose v into eigenmodes
v = αΦ0(v) +

∑∞
i=1 viΦi (and thus by taking appropriate inner products with the

adjoint eigenfunctions the disturbance equation (2.8) can be reduced to a system
of partial differential equations for α(w, τ) and vi(w, τ)). We now assume that all the
higher-order eigenvalues ofL lie in the left half of the complex λ-plane and at a finite
distance from the imaginary axis or equivalently the higher-order modes vi associated
with these eigenvalues are stable (this assumption has been rigorously verified by a
numerical solution of the eigenvalue problem in (2.10) – see the next section). As time
advances to unit order the evolution of the vi modes is much faster than that of α. This
asymptotic evolution will then be ‘adiabatically’ coupled to α and the coupling can be
simply obtained by invoking the quasi-steady approximation ∂vi∂τ ≈ 0. Therefore, in
the vicinity of the instability, we are left with only one relevant dynamical variable,
the ‘critical’ mode α(w, τ) which varies on a time scale much slower than that of
the other modes and thus contains all the information about the asymptotic time
dependence of v near the instability onset. The basic idea of the nonlinear analysis
of the next section is to eliminate adiabatically the fast modes to obtain an evolution
equation for α(w, τ).

We now relate α to the perturbation of the apparent contact line boundary vB since
(2.8) is a disturbance equation for the front height only: with Φ = Φ∗ + v where
v ∼ αΦ0 to leading order, one obtains Φ ∼ Φ∗ + αΦ∗v . For vB, δ � 1, a Taylor series
expansion of Φ(vB) as v → 0−, which represents the location of the unperturbed
contact line, shows that

vB ∼ −α (2.15)

where terms O(αvB) have been neglected and hence the leading-order mode α(w, τ)
gives the negative amplitude of the fingers in the weakly nonlinear stage of the
instability and in a frame of reference moving with the unperturbed contact line.
We now notice that the fundamental equation (2.1) is symmetric under y → −y or
w → −w. We therefore expect the evolution equation to contain only even terms
in w and since the system is dissipative, no time-reversal symmetry is allowed.
These considerations lead to the linear evolution equation for the finger location
ατ + αww + αwwww = 0 with the effects of instability and dissipation represented by the
second- and fourth-order derivatives respectively (the linearized form of the evolution
equation can also be obtained by a Fourier transform of the linearized form of (2.8))
and with the fourth-order derivative αwwww causing damping to counterbalance the
instability term αww . For the quadratic nonlinear terms we notice that the only possible
nonlinearities with respect to w are α2, α2

w , ααww , α2
ww and (ααw)w . An inspection of

the nonlinearities for the disturbance v in (2.8) eliminates α2
w and α2

ww . The α2

nonlinearity would originate from N1 in (2.8) and the ααww and (ααw)w nonlinearities
from N5 in (2.8) respectively. The nonlinearities α2 and ααww do not conserve mass
for periodic boundary conditions on a domain L in the transverse w-direction as a
simple integration of (2.8) from v → −∞ to v → +∞ and w = −L/2 to w = L/2
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reveals: ∫ +∞

−∞

∫ L/2

−L/2
∂v

∂τ
dwdτ = 0

which with v ∼ αΦ∗v gives

∂

∂τ

∫ L/2

−L/2
αdw = 0.

This leaves (ααw)w as the only possible quadratic nonlinearity for the α-evolution
equation. Thus, we expect an evolution equation of the form

ατ + κ1αww + κ2αwwww + κ3(ααw)w = 0 (2.16)

where we have implicitly assumed that the higher-order nonlinear term has the ‘right
sign’ to saturate the dynamics within the weakly nonlinear slowly varying realm
for which the equation is valid. The dependence of the coefficients κ1,2,3 on the
physical parameters of the problem, for instance the precursor film thickness, cannot
be determined by simple symmetry considerations and a more detailed analysis will
be undertaken in the next section for that purpose. Nevertheless it is the symmetry
y → −y and conservation of volume that determine the form of the quadratic
nonlinearity.

3. Derivation of the fingering evolution equation using centre manifold
projection

We now offer a rigorous derivation of (2.16) which will allow us to obtain the
coefficients of the evolution equation. Our starting point is the eigenvalue problem in
(2.10). The higher-order eigenfunctions of L must be constructed numerically. For
this purpose we adopted the method of orthogonalizations suggested by Conte (1966)
appropriately modified to account for the infinite domain considered here and used by
Spaid (1995) and Spaid & Homsy (1996) for the solution of the eigenvalue problem
governing the linear stability of the capillary hump. The method eliminates parasitic
growth of undesired roots at the ends of the domain and is based on shooting from
both sides of the integration interval along linearly independent trajectories until a
matching point is reached somewhere in the middle where a solvability condition is
applied. The solutions are examined at each step and they are orthonormalized when
they exceed certain non-orthogonality criteria.

The numerical scheme confirmed that λ0 = 0 is an eigenvalue with corresponding
eigenfunction Φ∗v . For the adjoint problem, an inspection of (2.11) and (2.12) shows

that Φ̂0 = const. is a null eigenfunction. The value of the constant can be selected
when the inner product 〈Φ0, Φ̂0〉 = (δ − 1) × const. is normalized to 1. We have

confirmed numerically that Φ̂0 = const. is the only null eigenfunction of L∗. Hence,
the null space ofL∗ has the same dimension as the null space ofL, 0 is an eigenvalue
of geometric and algebraic multiplicity 1 and Φ∗v forms a complete basis for the null
space of L. This is not the case for the operator associated with the stability of
solitary wave solutions of the Kuramoto–Sivashinsky equation (Chang & Demekhin
1996; Elphick et al. 1991): the null space of the adjoint operator is two-dimensional
and the localized pulse solutions have, in addition to the translational symmetry
considered here, the Galilean symmetry that generates a one-parameter family of
solutions by appropriately shifting the substrate thickness and speed of the solitary
pulses.
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The numerical method revealed that

Re(λi) < 0, i = 1, 2, 3, . . . , (3.1)

with the first non-zero eigenvalue λ1 ' −0.55 for δ = 0.1. For the numerical construc-
tion of the eigenfunctions we note that

∫ +∞
−∞ Φkdv = 0 for k 6= 0 as a simple integration

of (2.10) shows. This property implies that the higher-order discrete modes do not
carry mass (due to the gradient-flow form of the evolution equation (2.1) associated
with mass conservation) and can be used as a means of checking the accuracy of
the numerical method. The method also requires the boundary conditions for the
higher-order adjoint eigenfunctions: it follows from (2.12) that Φ̂k(k 6= 0) → 0 as
v → ±∞.

We now expand the disturbance v in (2.8) as

v(τ, r, v) = α(τ, r)Φ0(v) + v̂(τ, r, v) (3.2a)

where v̂ is the complement with respect to the null eigenfunction Φ0. By introducing
the operator P to denote projection onto the null space,

Pf = 〈f, Φ̂0〉Φ0, (3.2b)

and the complementary projection operator I − P to denote projection onto the
complement of Φ0,

(I−P)f =

∞∑
i=1

〈f, Φ̂i〉Φi (3.2c)

for any function f in the domain of L, the disturbance v can be written as

v = Pv + (I−P)v. (3.2d)

The above expansion is a real-valued sum even when complex eigenvalues and
eigenfunctions are present: indeed for real operators complex eigenvalues and eigen-

functions appear in conjugate pairs and hence if 〈v, Φ̂k〉, 〈v, Φ̂k+1〉 are the coeffi-

cients of Φk and Φk+1 respectively with λk+1 = λk and Φk+1 = Φk , one must have

〈v, Φ̂k+1〉 =
∫ +∞
−∞ vΦ̂k+1 dv = 〈Φ̂k, v〉 = 〈v, Φ̂k〉.

Substituting (3.2d) into (2.8), taking inner products of both sides of the resulting
equation with Φ̂0, Φ̂i(i 6= 0) and using the orthonormalization relation 〈Φi, Φ̂j〉 = δij
gives the equations

ατ =

〈
3∑
1

Ni(αΦ0 + v̂), Φ̂0

〉
+ ε2

〈
7∑
4

Ni(αΦ0 + v̂), Φ̂0

〉

+ε4

〈
11∑
8

Ni(αΦ0 + v̂), Φ̂0

〉
(3.3a)

and

v̂τ =Lv̂+(I−P)

3∑
1

Ni(αΦ0+v̂)+ε2(I−P)

7∑
4

Ni(αΦ0+v̂)+ε4(I−P)

11∑
8

Ni(αΦ0+v̂).

(3.3b)
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The first step of our weakly nonlinear analysis involves writing equations (3.3 a, b)
in the following extended manner:

ατ = F(v̂, α), (3.4a)

v̂τ =Lv̂ + G(v̂, α), (3.4b)

(ε2)τ = 0, (3.4c)

where the nonlinear functions F and G are given in (3.3 a, b) and ε2 is now our small
parameter. Recall that the real part of all eigenvalues of L is negative and the zero
eigenvalue is well isolated. The centre manifold theorem (Carr 1981; Guckenheimer
& Holmes 1983; Roberts 1988; Chang 1989; Cheng & Chang 1990; Fujimura 1991)
then states that the system (3.4 a-c) has a two-dimensional centre manifold given by
the adiabatic coupling v̂ = v̂(α, ε2) = O(2) to leading order with respect to α, ε2. Not
only does the centre manifold theorem stipulate the existence of the centre manifold,
it also ensures that this manifold is attracting at large times. To obtain the flow onto
the centre manifold we note that ατ = O(2) so that v̂τ = O(3) and the leading-order
centre manifold projection (tangent-space approximation) is simply

v̂τ ∼ 0 (3.5a)

or

Lv̂ ∼ α2(I−P)
∂

∂v

[
(3Φ∗ + 3Φ∗Φ∗vvv)Φ

2
0 + 3Φ∗2Φ0Φ0vvv

]
+ε2αrr(I−P)

[
∂

∂v
(Φ∗3Φ0v) + Φ∗3Φ0vv

]
+ O(3). (3.5b)

Note that L is a singular operator and the right-hand side of (3.5b) must satisfy the
Fredholm alternative solvability condition 〈RHS, Φ̂0〉 = 0; it does so since the null
eigenfunction has been removed via the complementary projection operator I−P.

Inverting L in (3.5b) yields the leading-order centre manifold projection

v̂ ∼ α2f2(v) + ε2αrrf3(v) + O(3) (3.6)

where

f2(v) =

∞∑
i=1

1

λi
〈f0, Φ̂i〉Φi, f3(v) =

∞∑
i=1

1

λi
〈f1, Φ̂i〉Φi

with

f0(v) =
∂

∂v
[(3Φ∗ + 3Φ∗Φ∗vvv)Φ

2
0 + 3Φ∗2Φ0Φ0vvv]

and

f1(v) =
∂

∂v
(Φ∗3Φ0v + Φ∗3Φ0vv).

The series in f2(v) and f3(v) converge fast by using the first few eigenvalues and
eigenfunctions (it was found that the number of eigenfunctions necessary for con-
vergence increased with decreasing δ). Higher-order corrections to the leading-order
centre manifold projection (3.6) can be obtained with standard techniques based on
Taylor series expansion of v̂ at the origin (Carr 1981; Guckenheimer & Holmes 1983).

The dynamics on the centre manifold is governed by the slow equation (3.3a)
with v̂ given by (3.6). We note that v̂ in (3.3a) appears in second- or higher-order
nonlinearities and hence the approximation for α in (3.3a) is valid up to O(3) and
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terms O(4) and higher must be neglected. Substituting now (3.6) into (3.3a) yields a
nonlinear partial differential equation for the evolution of α in time and space,

ατ + χαww + ψαwwww + ω(ααw)w = 0, (3.7)

where ε has now been reabsorbed in w and

χ =
1

1− δ 〈Φ
∗3 − (1 + δ + δ2)Φ∗ + δ + δ2〉,

ψ =
1

1− δ ( 1
4
(1− δ4)− 〈Φ∗3f3vv〉)

ω = − 1

1− δ (3〈Φ∗2Φ∗vΦ∗vvv〉+ 2〈Φ∗3f2vv〉).
Two terms analogous to α2 and α3 in (3.7) are not shown since their corresponding
coefficients

1

1− δ 〈−[(3Φ∗2 + 3Φ∗Φ∗vvv)Φ
2
0]v − 3(Φ∗2Φ0Φ0vvv)v〉

and

1

1− δ 〈−2[(3Φ∗ + 3Φ∗Φ∗vvv)Φ0f2]v − (Φ0f2vvv)v − (Φ0vvvf2)v〉

+〈−(Φ3
0 + 3Φ∗Φ2

0Φ0vvv + Φ∗vvvΦ
3
0)v〉

vanish as can be easily shown using the boundary conditions in (2.10). Note that
the coefficients in (3.7) are functions of the precursor film thickness δ only with
χ, ψ, ω > 0 for all δ.

All of the above analysis relies on smooth expansions in slow spatial gradients
(in the transverse direction) compared with the characteristic length scales of the
unperturbed front. The small parameter ε deserves special attention. It is associated
with the introduction of a long scale in the transverse direction which approximates
a ‘hard’ problem by writing it as a perturbation of an easier problem. We thus utilize
the equation (ε2)τ = 0 to introduce the approximation of a large-scale slowly varying
spatial dependence. Adjoining this equation to (3.4a) and (3.4b) focuses the subsequent
centre manifold analysis upon the small-wavenumber, large-scale dynamics. Upon
inspecting the details of the algebra it is apparent that ε just acts as a place holder
for the spatial derivative ∂/∂w. The adjoining of the trivial equation (ε2)τ = 0 just
focuses attention upon small wavenumbers. Precisely the same effect is achieved in
physical variables simply by treating ∂/∂w as ‘small’. A rationale for doing this is
based upon the local dynamics in any part of the domain but it is not rigorous
because the operator ∂w is unbounded and the extant theory by Gallay (1993) cannot
be applied directly. Nevertheless, extensions of centre manifold analysis to very high
order for other problems (see for instance Mercer & Roberts 1990) shows that the
long-wave approximation actually converges for wavenumbers of O(1). In this study
we have restricted our attention to the leading-order centre manifold projection with
the understanding that the limits to the resolution of the slowly varying, long-wave
model can only be improved by retaining more dynamic modes in the model. In any
case, one can approximate the shape of the centre manifold and its evolution to any
order. Moreover, competing small effects may appear at any order in the analysis, they
need not just arise at leading order. The centre manifold approach enables a rational
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treatment of many and varied small effects, and allows any consistent truncation
when the model is applied.

4. Evolution towards fingers
Several comments are now appropriate regarding equation (3.7): it is a Kuramoto–

Sivashinsky-type partial differential equation for the evolution of the disturbances
as the front moves down the inclined plane. The Kuramoto–Sivashinsky equation
appears in several contexts–chemical oscillations, chemically reacting fronts and flames
(Kuramoto 1984), falling films (Shkadov 1973; Lin 1974; Nepomnyaschy 1974; Chang
1994; Kalliadasis & Chang 1994b; Chang & Demekhin 1996 – see also Homsy 1974
for the generalization of this equation to include dispersion) etc. – and in that respect
the nonlinear stage of the fingering instability is similar to the problem of the dynamics
of slowly varying wave fronts (solitary or shock waves) arising in flame or reaction
propagation (Kuramoto 1984). However, the convective term ααw of the Kuramoto–
Sivashinsky equation is differentiated once more with respect to the spatial variable
w. Physically this means that disturbances can only grow or decay without any lateral
displacement due to the nonlinear kinematic effect embodied by the convective term
ααw .

Equation (3.7) can also be considered as a nonlinear diffusion equation for the
diffusivity χ. Hence, the front will be unstable if and only if χ > 0 as is the case here.
More precisely, substituting the usual normal mode expansion α ∝ exp(λτ+ ikw) into
the linearized version of (3.7), one obtains the dispersion relation

λ = χk2 − ψk4 (4.1)

for the growth rate λ as a function of wavenumber k. Thus small-amplitude sinusoidal
disturbances are linearly unstable (growing) for long wavelengths – with a band
of unstable wavenumbers that extends to zero – and stable (damping) for short
wavelengths with a cut-off wavenumber kc =

√
χ/ψ. The growth rate is real and the

disturbances will only grow or decay as has been already pointed out. The maximum
growth rate occurs at wavenumber

km =

√
χ

2ψ
(4.2a)

with wavelength

Lm = 2π

√
2ψ

χ
. (4.2b)

Obviously long-wave disturbances with k → 0 are always unstable and therefore
the instability is a long-wave variety. In fact, it is a phase instability with growth
due to translation and vB – being the slowly varying ‘phase’ – is a mode with
a vanishing growth rate in the long-wavelength limit: the travelling wave front
Φ∗(v) = Φ∗(H0

−1/3B1/3(x−Γ0)) is in some sense analogous to a limit-cycle solutionX(t)
of an autonomous ordinary differential equation dX/dt =F(X),X(t+T ) = X(t) with
T the period of oscillation. In fact, both have ‘phase’ in the sense that the translations
t → t + t0 and v → v + v0 with arbitrary t0, v0 again yield steady solutions X(t + t0),
Φ∗(v+ v0) respectively. This essentially says that there always exists a zero eigenvalue
(corresponding to translational disturbances) in the linearized system about X(t) or
Φ∗(v). The analogy may persist when some weak coupling is introduced between such
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modes of motion. It is quite evident what is meant by interactions between oscillators.
For our travelling pulse weak coupling means that one-dimensional fronts are aligned
to form a two-dimensional pulse whose front deviates slightly from a straight line
and shows a slow undulatory spatial variation because the terms associated with the
transverse variation are small perturbations due to the slow w-dependence of Φ.

Phase instability occurs in a large variety of hydrodynamic and reaction-diffusion
systems (Kuramoto 1984; Fauve 1987) with finite-amplitude patterns subjected to
long streamwise modulations or disturbances in the transverse direction. Typically
a Ginzburg–Landau-type equation for the nonlinear evolution of disturbances from
a large-amplitude pattern is derived using multiple-scale methods (Kuramoto 1984).
The analysis presented here, based on techniques from dynamical systems theory to
derive the evolution equation for the fingers (3.7), has shown that fingering from a
straight front is also a phase instability.

Let us now consider the coefficients of the evolution equation (3.7) in detail
by isolating the terms of (2.8) responsible for χ, ψ, ω and exploring the influence
of the physical forces on these coefficients. We first notice that the term in (3.7)
responsible for the onset of fingering is χaww where χ = 〈Φ∗3Φ0vv〉/(δ − 1) using (2.6),
in agreement with the perturbation analysis by Troian et al. (1989) of the linear
growth rate as k → 0. From (2.1), the flow in the y-direction due to the x-curvature
is (∂/∂y)[h3(∂/∂y)(hxx)] or in terms of the modified v, w variables (∂/∂w)(Φ3Φvvw)

which with Φ ∼ Φ∗ + v = Φ∗ + αΦ0 + v̂ with v̂ = O(2) gives to leading order
(∂/∂w)(Φ∗3αwΦ0vv) + O(2) ∼ αwwΦ

∗3Φ0vv . Therefore, the instability is similar to the
Rayleigh instability of a liquid cylinder, at least at small wavenumbers, and the
response of the base flow to the leading-order disturbance αΦ0 is lateral flow due
to variation of the v-curvature αΦ0vv in the transverse direction. This is consistent
with a full numerical solution of (2.1) as an initial value problem by Schwartz
(1989) who observed that for B−1 = 0, i.e. in the limit of zero surface tension,
fingering does not occur. For B−1 6= 0 his numerical experiments revealed that
disturbances decay initially until the curvature becomes sufficiently large at the front.
At that moment lateral flow, caused by greater curvature and hence higher pressure
resulting from surface tension, leads eventually to steady growth of well-defined
fingers. This curvature is provided by the hump and one expects a bumpless profile to
be stable. Such flat profiles have been constructed by Bertozzi & Brenner (1997) for
small inclination angles where the hydrostatic head associated with the gravitational
component normal to the substrate becomes important.

Using equation (2.6) for the base state we can rewrite χ as

χ =
1

1− δ
∫ ∞
−∞

(Φ∗ − 1)(Φ∗ − δ)(Φ∗ + 1 + δ)dv,

first derived by Bertozzi & Brenner (1997) and valid for all inclination angles. The
significance of this expression for the leading-order spectral perturbation expansion
for the growth rate λ is that χ becomes negative for a bumpless profile with Φ∗ < 1. In
this case, computation of the growth rate for all wavenumbers by Bertozzi & Brenner
shows that the front is linearly stable. We can therefore adopt

χ > 0

as a sufficient and necessary condition for instability and subsequent finger growth.
Figure 2 shows the variation of χ and maximum curvature in the streamwise

direction (Φ∗vv)max for various δ values. This maximum curvature appears just before
the dimple that links the front to the precursor film thickness. This large curvature
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Figure 2. (a) Variation of the diffusivity χ in (3.7) with δ. The front becomes increasingly unstable
for small values of the precursor film thickness. (b) Variation of the maximum curvature Φ∗vv with
δ. The v-curvature induces flow in the transverse direction leading to steady growth of fingers.

will cause high pressure resulting from surface tension and therefore flow in the
transverse direction leading eventually to steady growth of fingers. As is evident from
the figure both χ and (Φ∗vv)max decrease as δ increases and they approach zero as
δ → 1 consistent with the Rayleigh instability of a liquid cylinder: the larger the
radius of curvature – corresponding to smaller (Φ∗vv)max in our case – the more stable
the cylinder.

The other two coefficients of (3.7) deserve special attention also. Consider first the
coefficient ψ of the fourth-order derivative. It can be written as

ψ = ψ1 + ψ2 (4.3)

where

ψ1 =
1

1− δ 〈−Φ
∗3Φ0, Φ̂0〉 =

1

4

1− δ4

1− δ ,

ψ2 = − 1

1− δ 〈Φ
∗3f3vv〉.

The ψ1 contribution corresponds to flow in the w-direction due to variation of the
w-curvature αwwΦ0 in that direction: indeed the flow in the y-direction due to the
y-curvature (stabilizing Rayleigh term for a liquid cylinder) is (∂/∂y)

[
h3(∂/∂y)(hyy)

]
or in terms of the modified v, w variables (∂/∂w)(Φ3Φwww) which with Φ ∼ Φ∗+αΦ0+v̂
gives to leading order (∂/∂w)(Φ∗3Φ∗vαwww) = αwwwwΦ

∗3Φ∗v . This contribution to ψ is
always positive and acts so as to stabilize the destabilizing χαww term. Notice that ψ1

increases for large δ as the ridge gradually decays leading to an increasingly stable
front.

The ψ2 contribution to ψ originates from the ε2αrrf3(v) term of v̂ in ε2(∂/∂r)(Φ∗3v̂vvr)
of N4(αΦ0 + v̂) in equation (3.3a), with v̂ ∼ α2f2(v) + ε2αrrf3(v) the first higher-order
correction to the leading-order disturbance v ∼ αΦ0. Therefore, while variation of the
v-curvature of the leading-order disturbance αΦ0 in the w-direction is destabilizing,
variation of the v-curvature of the ε2αrrf3(v) higher-order term in the disturbance –
as determined by centre manifold projection – is stabilizing! Our computations show
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that this flow contributes mostly to the ψ2 term and always dominates the Rayleigh
term ψ1.

Other terms may also contribute indirectly to ψ2. For instance the flow in the
v-direction due to the w-curvature

∂

∂v

[
Φ3 ∂

∂v
(Φww)

]
∼ ∂

∂v
(Φ∗3αwwΦ0v) = αww

∂

∂v
(Φ∗Φ0v).

The contribution of this term to ψ is indirect via the f1(v) function in f3(v) which
in turn is a complicated function of the eigenvalues, eigenfunctions and adjoint
eigenfunctions of L.

Consider now the coefficient ω of the only nonlinearity in the α-equation. It can be
written as

ω = ω1 + ω2 (4.4)

where

ω1 = − 3

1− δ 〈Φ
∗2Φ∗vΦ

∗
vvv〉 = 3

δ + δ2

1− δ ln δ + 2(1 + δ + δ2)

and

ω2 = − 2

1− δ 〈Φ
∗3f2vv〉.

Next observe that the term (∂/∂y)
[
h3(∂/∂y)(hxx + hyy)

]
of (2.1) is responsible for the

ω1 contribution: with respect to the modified variables v, w this term can be written as

∂

∂w

[
Φ3 ∂

∂w
(Φvv + Φww)

]
= ε2 ∂

∂r

[
Φ3 ∂

∂r
(Φvv + ε2Φrr)

]
= ε2 ∂

∂r

[
(Φ∗ + v)3 ∂

∂r
(vvv + ε2vrr)

]
∼ ε2 ∂

∂r
(Φ∗3vvvr + ε2Φ∗3vrrr + 3Φ∗2vvvvr),

where terms of O(4) and higher have been neglected. The first two terms in the
above expression correspond to the χ and ψ1 coefficients respectively. The nonlin-
earity 3Φ∗2vvvvr is a ‘nonlinear Rayleigh term’ corresponding to the ω1-coefficient,
which may be therefore associated with the first nonlinear correction to the linear
destabilizing term Φ∗3vvvr . The ω2 contribution to ω originates from the α2f2(v) term
of ε2(∂/∂r)(Φ∗3v̂vvr) in N4 and can be therefore associated with the variation in the
w-direction of the v-curvature of the nonlinearity α2f2(v) in the disturbance v – as
determined via centre manifold projection. The function f2(v) in turn depends on
f0(v) which is composed of (∂/∂v)(3Φ∗Φ2

0) originating from (∂/∂v)(3Φ∗v2), the flow
in the v-direction due to the body force, and (∂/∂v)(3Φ∗vvvvv + 3Φ∗v2Φ∗vvv) the first
nonlinear correction responsible for flow in the v-direction due to the v-curvature:

∂

∂v

[
(Φ∗ + v)

3 ∂

∂v
(Φ∗vv + vvv)

]
=

∂

∂v

[
Φ∗3Φ∗vvv + Φ∗3vvvv + 3Φ∗2vΦ∗vvv + 3Φ∗2vvvvv + 3Φ∗v2Φ∗vvv + O(3)

]
.

Hence, it is the streamwise curvature and the body force that are responsible for the
nonlinearity (ααw)w . Nevertheless, the front is driven by viscous, surface tension and
gravity forces all coupled nonlinearly through our fundamental equation (2.1) and the
above comments only provide a descriptive interpretation of the intricate combination
of the various forces responsible for this unique hydrodynamic instability.

Figure 3 depicts the variation of the coefficients ψ, ω with respect to the precursor
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Figure 3. (a) Variation of the coefficient ψ of the fourth-order derivative in (3.7) with δ.
(b) Variation of the coefficient ω of the nonlinearity in (3.7) with δ.

0 0.1 0.2 0.3 0.4 0.5
d

Lm

20

10

30

40

50

60

Figure 4. Maximum growing wavelength Lm as a function of δ.

film thickness δ. Figure 4 shows the maximum growing wavelength Lm as a function
of δ. The linear stability analysis performed by a number of authors (Troian et al.
1989; Spaid & Homsy 1996; Bertozzi & Brenner 1997) has shown that for small
δ, Lm is a weak function of δ. Figure 4 confirms this weak δ dependence with Lm
varying from 12.57 at δ = 0.1 to 9.50 at δ = 0.01. These values are in good agreement
with the value Lm ≈ 12 reported for instance by Spaid & Homsy corresponding to
a maximum growing wavenumber ≈ 0.5 for δ in the region 0.1–0.01 even though
our perturbation theory is not valid at very small δ. Indeed, the eigenvalues of L
in (2.10) can be extended away from wavenumber k = 0 to form different branches
of the dispersion curve with (4.1) being the dominant mode (the ‘phase-like’ branch
according to Kuramoto’s terminology). The characteristic time and space scales τc and
wc for the instability can be estimated on the assumption that the effect of instability,
represented by the χαww term in (3.7), and that of the damping ψαwwww and also the
term ατ are comparable in magnitude:

χ

wc2
∼ ψ

wc4
∼ 1

τc
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Figure 5. Evolution of the contact line Γ (w, τ) = Γ0(τ) + B−1/3 H0(τ)1/3 vB(w, τ) for δ = 0.1 and
B = 10 using the initial condition α(w, 0) = 0.1 cos (2πw/Lm) in the interval 4Lm. The lines are
separated by a time interval ∆τ = 0.1.

or

wc ∼
(
ψ

χ

)1/2

, τc ∼ ψ

χ2
.

The unstable fluctuations associated with the phase-like branch (4.1) are characterized
by a long time scale τc and long space scale wc provided that ψ is larger than χ, χ2

which is indeed the case for large values of the precursor film thickness (see figures
2, 3). In this case the characteristic time scales of the stable fluctuations associated
with the eigenvalue λ1 in (2.10) and of unstable phase fluctuations associated with λ0

are clearly separated. The λ1 amplitude-like fluctuations have far shorter time scales
and are expected to follow adiabatically the slow motion of the unstable phase-like
fluctuations. In contrast, when the unstable phase-like fluctuations have time scales
comparable to those of some amplitude fluctuations, the phase description employed
here cannot completely describe the system and amplitude variation must be taken
into account leading to coupled amplitude and phase equations which are beyond the
scope of this study.

We shall now focus on the solutions of (3.7). Although our approach is weakly
nonlinear and hence restricted to small-amplitude disturbances, it is expected that
(3.7) will capture the qualitative features of the fingers’ shape in the strongly nonlinear
regime where the perturbation theory is no longer valid. A numerical study of the
equation was carried out using an implicit Crank–Nicholson finite differencing scheme
coupled with a Newton iteration for the solution of the resulting nonlinear system.
We impose periodic boundary conditions on α (and therefore Φ) over a finite domain
L larger than L(kc). The space and time steps are smaller than 0.1 to ensure numerical

stability which is checked by examining the constancy of
∫ L/2
−L/2 α(w, τ)dw in time

guaranteed from (3.7) for periodic boundary conditions.
Figure 5 depicts the temporal evolution of the contact line Γ = Γ0 + B−1/3H0

1/3vB
as a function of the modified time scale τ for δ = 0.1, using the single-harmonic
initial condition α(w, 0) = 0.1 cos (2πw/Lm) corresponding to the maximum growing
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Figure 6. Snapshots of the contact line Γ (w, τ) for δ = 0.2 and B = 10 using as initial condition a
single harmonic corresponding to the maximum growing wavenumber in the interval 2.78Lm.

wavenumber in order to speed up the evolution at small times. The values of the
coefficients in (3.7) are χ = 1.41, ψ = 2.81 and ω = 2.57 with Lm = 12.57 and
L = 4Lm. The inception region spans a time-scale of order − log(α0)/λ(km) with α0 the
initial amplitude. The final evolution is a series of four equally spaced fingers with
the same width, speed and shape. In figure 5 we only show the last 30 snapshots of
the evolution before finite-time blow-up behaviour for the zero and all higher-order
derivatives of α occurred. Unlike the Kuramoto–Sivashinsky equation whose solution
remains bounded for periodic boundary conditions and sufficiently smooth initial data
(Kalliadasis & Chang 1994b), equation (3.7) exhibits blow-up behaviour for a large
set of initial conditions. This unbounded growth can be arrested when higher-order
nonlinearities are included in (3.7). Note that one of the most important features of
the instability, the presence of an onset time as was shown experimentally by Fraysse
& Homsy (1994), cannot be captured by our analysis which is asymptotically valid
for large times and such that the capillary ridge in Huppert’s self-similar behaviour
becomes immediately unstable once formed. We therefore set arbitrarily in all our
numerical integrations the ‘onset time’ at t = 1 corresponding to τ = 0.

Figure 6 depicts the temporal evolution of the contact line for δ = 0.2 using again
a single-harmonic initial condition. The values of the coefficients in (3.7) are now
χ = 0.76, ψ = 3.16 and ω = 5.2. The maximum growing wavelength is Lm = 18.1
almost 1.5 times larger than Lm(δ = 0.1). It is the larger value of ω in (3.7) that
is responsible for the flat finger tips in figure 6 and large finger lengths in figure 5
(defined as the distance between the tip and trough). The nonlinearity in (3.7) may be
identified as a nonlinear surface tension appropriately modified by the effect of the
body force. For small values of the precursor film thickness δ (corresponding to small
values of ω) the large capillary pressure associated with a large curvature (see figure 2)
and therefore a very steep front resists fluid motion in the transverse direction. Hence,
the front will break into well-defined fingers whose length will gradually increase as
more liquid is supplied by the body force from the minima between subsequent fingers
and therefore the troughs will gradually slow down. Notice also that as δ increases, χ
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Figure 7. (a) Contact line evolution for δ = 0.4 and B = 10 using as initial condition a single
harmonic corresponding to the maximum growing wavenumber in the interval 1.45Lm. (b) Fingering
for Castor oil on a plane with an 8◦ inclination angle covered with a prewetting film (Veretennikov
et al. 1998). Images are taken after the film has drained for 2 hours.

decreases and ψ increases (see figures 2, 3) resulting in a more stable capillary ridge.
Consequently, increasing δ corresponds to decreasing the growth rate and increasing
the most amplified wavelength (see figures 5, 6, 7a) since the maximum height and
slope of the capillary ridge decrease (the ridge eventually disappears as δ → 1) and
the front becomes less prone to the fingering instability.

In fact as is evident from figures 6 and 7 the presence of a thick film suppresses the
instability. This seems to be consistent with the experimental finding by Melo et al.
(1989) for the spinning drop problem that the instability is suppressed when the solid
surface is pre-wetted with a thick enough film of the same liquid. However, Melo et
al. do not report the shape of the fingers observed experimentally and clearly more
experiments are needed in that direction. We also note that the number of fingers
decreases when the substrate has been pre-wetted with a thick film in agreement with
recent experimental data reported by Veretennikov et al. (1998) for small inclination
angles. An interesting result concerning the precursor film model is that large δ
values do not correspond to wetting fluids: existing experimental data with dry
surfaces (Huppert 1982; Silvi & Dussan V. 1991) clearly demonstrate that completely
wetting fluids develop a larger number of fingers than partially wetting ones.

Several numerical experiments with different δ values were performed. The parallel-
sided fingers found experimentally for partially wetting fluids (Huppert 1982; Silvi &
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Figure 8. (a) Contact line evolution with random initial condition in the domain 16Lm for δ = 0.1
and B = 10. (b) Fingering for Castor oil on a plane with an 8◦ inclination angle covered with a
prewetting film (Veretennikov et al. 1998). Drainage now takes place for 12 hours.

Dussan V. 1991) on dry surfaces were never observed in our numerical integrations
even at very small δ. In all cases the same saw-tooth pattern emerged with sharper
minima at smaller δ values. The pattern seems to be qualitatively similar to that
observed experimentally for completely wetting fluids on dry surfaces (Huppert 1982;
Silvi & Dussan V. 1991; de Bruyn 1992). We also note that saw-tooth patterns corre-
sponding to different δ values can be scaled into a single pattern when appropriately

normalizing (3.7) by setting α → (χ/ω)α, τ → (ψ/χ2)τ and w → (ψ/χ)
1/2
w to obtain

the universal form

ατ + αww + αwwww + (ααw)w = 0.

The above observations indicate that the instability on a pre-wetted surface is
distinctly different from the instability on a dry plane as was first discovered exper-
imentally by Veretennikov et al. (1998). Consequently, we cannot expect δ to model
wettability and contact line motion on a dry surface. The model used to remove
the singularity associated with a contact line plays a secondary role in the linear
stage of the instability (for the precursor film model this is the case when δ is small)
but it becomes critical in the nonlinear stage. Consequently, a true contact angle
boundary condition is necessary to obtain the two instability patterns seen experi-
mentally depending on the wettability characteristics of the solid–liquid system. This
is consistent with the numerical solution by Moyle, Chen & Homsy (1999) of the
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Figure 9. Front position versus time t for the conditions of figure 5. The open circles and crosses
show the maxima and minima of the perturbed contact line respectively while the dashed line
corresponds to Huppert’s t1/3 behaviour of the unperturbed front.

fully nonlinear moving boundary problem in (2.1) adopting a Navier-type slip model.
However, Moyle et al. as well as Schwartz (1989) forced the growth of fingers by an
appropriately chosen initial condition (corresponding to the most unstable wavelength
according to linear theory for the study by Moyle et al.). The present study predicts
the fingering pattern for perfectly wetting fluids and at the same time demonstrates
that the wavelength selected by the system is the one predicted from linear stability
analysis (see discussion below).

Figures 7 and 8 contrast the evolution with the experimental data by Veretennikov
et al. for Castor oil spreading on a plane with an 8◦ inclination angle covered
with a prewetting film of the same liquid. The authors are unable to measure the
precursor film thickness and they use the drainage time as a qualitative measure
for this thickness. Depending on the time of drainage they were able to produce
uniform prewetted films of arbitrary δ. These are the only experiments available
in the literature for prewetted planes and since the inclination angle is small and
the value of δ unknown we do not make a qualitative comparison with experiments.
Nevertheless, the shape of the contact line is in good agreement with the experimental
data even though the extra term in the dimensional form of (2.1), −ρg cos β(h3hx)x,
associated with the gravitational component in the direction perpendicular to the
solid boundary has been neglected in our theory. Preliminary analysis shows that this
term does not alter the functional form of (3.7) (as an inspection of the possible
nonlinearities also indicates – see discussion in § 2); however, we anticipate that the
value of the coefficients in (3.7) for the same δ will be different.

Figure 8(a) shows the temporal evolution of the contact line for δ = 0.1 in an
extended domain L = 16Lm using appropriately smoothed random noise generated
by a uniform distribution in the interval [−0.1, 0.1] as initial condition. This small-
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amplitude initial condition evolves into a series of 16 fingers with wavelength –
measured between subsequent maxima – close to that predicted by the linear stability
theory. When L is not an integer multiple of Lm the number of fingers seems to
be equal to the integer immediately above or below L/Lm. Some of the fingertips
are relatively flat while the minima between subsequent fingers are always sharp. A
variation in speed and finger length is also observed with the longer fingers travelling
faster. Some of the primary fingers are separated further than others with a relatively
flat contact line in between for a sufficiently long time. These flat areas eventually
break into rivulets (as the amount of liquid sucked from the minima by the primary
fingers decreases as the length of these fingers increases and liquid accumulates at the
minima leading to secondary fingers) with length smaller than the primary fingers and
with one of the rivulets moving faster than the others. The equation blows-up before
we can decipher the final evolution but a possible scenario could be that all these
rivulets emerging out of flat areas between primary fingers are eventually combined
into one single finger. In all cases the maxima move faster than the minima which
slow down significantly at large times. Figure 9 shows the variation of the maxima
and minima position versus time in the laboratory frame of reference for the evolution
depicted in figure 5. Clearly both fingertips and minima follow the t1/3 behaviour
predicted by Huppert at early times. Eventually the maxima move faster than the
unperturbed contact line and the minima slower without stopping completely. These
observations are in quantitative agreement with existing experimental data of the
fingering instability on dry surfaces (Huppert 1982; Silvi & Dussan V. 1991; Jerret
& de Bruyn 1992). An interesting result concerning the nonlinear evolution in figure
5 is that the fingertip and trough positions are described very well by the power-law
time-dependences t0.35 and t0.31 respectively with the average speed of tips and troughs
being very close to t1/3 at all times.

5. Summary and conclusion
We have analysed the nonlinear stage of the fingering instability problem intro-

duced by Huppert. A constant-thickness precursor film was assumed ahead of the
macroscopic front. Previous theory has dealt mainly with the linear stage of the insta-
bility and hence is only strictly valid for infinitesimal disturbances of a truly nonlinear
system. It thus seems pertinent to develop a theory for the nonlinear regime. Using
methods from dynamical systems, a partial differential equation for the evolution of
the fingers in the weakly nonlinear stage of the instability was derived. The equation
is accurate up to third order in the amplitude of the disturbances. The instability is
a phase instability due to the translational symmetry of the system in the streamwise
direction. The theory exploits the existence of a null eigenfunction associated with
the translational invariance. We have shown through numerical experiments that the
fingers develop a saw-tooth pattern qualitatively similar to that observed experimen-
tally for completely wetting fluids on a dry surface. The fingers that developed are
characterized by sharp minima and flat maxima. Interestingly, the parallel-sided fin-
gers for partially wetting fluids on dry surfaces were never observed in our numerics.
This implies that the precursor film model cannot be used to model spreading of
partially wetting fluids on dry surfaces. Moreover, large values of the precursor film
thickness correspond to a small number of fingers. In contrast, for spreading on a
dry plane, we know from existing experimental data that the more wetting the fluid
the larger the number of developed fingers. Hence, spreading on a pre-wetted surface
seems to be distinctly different from spreading on dry surfaces. Finally, our numerical
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experiments revealed that fingering can be prevented at large values of the precursor
film thickness.

The analysis presented here is intended to provide a theoretical framework for the
study of the nonlinear dynamics associated with the motion of forced contact lines.
The approach we developed enables us to characterize the instability, demonstrate the
wavelength selection process and describe the evolution after the onset. An important
issue that should be resolved next is the presence of a true contact line. This will
complicate the approach since the contact line advances in a direction normal to itself
and the dynamic contact angle boundary condition must be applied in a direction
normal to the contact line. Preliminary analysis indicates that (3.7) is replaced with
a system of two coupled nonlinear partial differential equations for the height of the
front and location of the contact line boundary respectively.

The author is grateful to Professor G. M. Homsy for helpful comments on the
manuscript, Professor H.-C. Chang for numerous stimulating discussions on pattern
formation and nonlinear dynamics, and would also like to thank the University of
Leeds for providing the computing facilities to perform the numerical work in this
study.
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